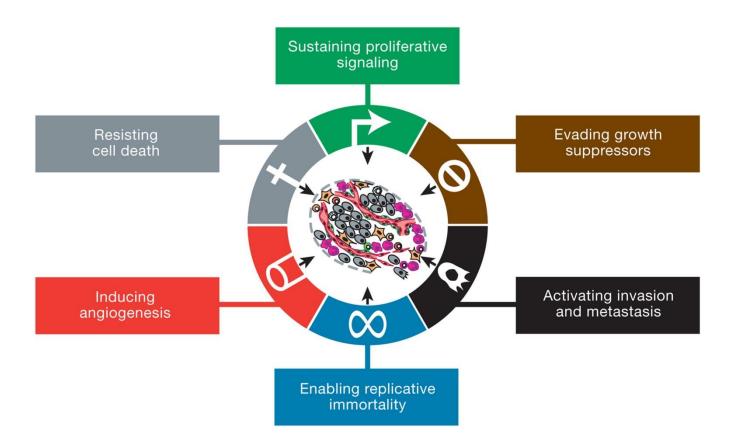


Understanding Magnesium and Magnesium Transporters in Cancer: .. How Far? ... How Close?

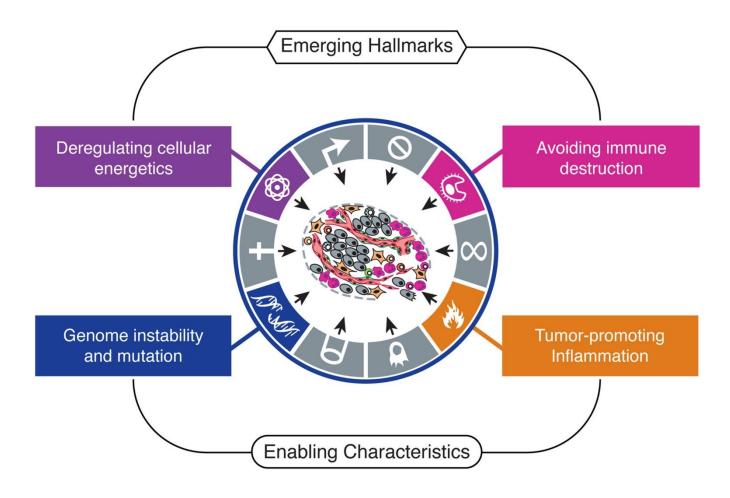
Federica I. Wolf

Istituto di Patologia generale Facoltà di Medicina "A. Gemelli"

Università Cattolica del Sacro Cuore - Roma



- A. Cittadini, **F.I. Wolf**, D. Bossi and G. Calviello *Magnesium in normal and neoplastic cell proliferation: state of the art of <u>in vitro</u> data, Magnesium Research, 1991, <u>4</u>, 23-33.*
- **F.I. Wolf**, A. Di Francesco, V. Covacci and A. Cittadini () *Regulation of Na-dependent magnesium efflux from intact tumor cells*, Supplement to Magnesium Research: ADVANCES IN MAGNESIUM RESEARCH:1 (R. Smetana ed.) John Libbey, London, 1997, pp. 490-496.
- F.I. Wolf and A. Cittadini () Magnesium in cell proliferation and differentiation, Front. Bioscience. 1999, 4, d607-617
- **F.I. Wolf**, A. Sgambato, V. Covacci, B. Faraglia, A. Torsello, R. Ardito and A. Cittadini () *Magnesium in the Control of Cell Proliferation. A metabolic enhancer or a specific regulator?* In: ADVANCES IN MAGNESIUM RESEARCH: NUTRITION AND HEALTH (Y. Rayssiguier, A. Mazur and J. Durlach eds.), **2001**, John Libbey, London, pp.73-81*.
- **F.I. Wolf**, J.A.M. Maier, A. Nasulewicz, C. Feillet-Coudray, A. Mazur, M. Simonacci, and A. Cittadini *Magnesium and Neoplasia: from Carcinogenesis, to Tumor Growth and Progression or Tumor Treatment.* **Arch. Biochem. Biophys. 2007**, 458:24-32.*
- **F.I. Wolf**, V. Trapani and A. Cittadini *Magnesium and the control of cell proliferation: looking for a needle in a haystack.* **Magnesium Research**, **2008**, 21(2), 1-9.*
- **F.I. Wolf**, A. Cittadini and J.A.M. Maier *Magnesium and Tumors: Ally or Foe?* **CancerTreatment Reviews**, **2009**, *Jun*;35(4):378-82.*
- **F.I. Wolf**, V. Trapani, A. Cittadini and J.A.M. Maier *Hypomagnesaemia in Oncologic Patients: To treat or not to treat?* **Magnesium Research**, 2009, *Mar;22(1):5-9.**
- V. Trapani, **F.I. Wolf** *Magnesium Transporters in Cancer: a Novel Paradigm in Tumour Development.* **Clin Sci (Lond). 2012** Oct;123(7):417-27.*
- Trapani V, Arduini D, Cittadini A, **Wolf F.I**. From Magnesium To Magnesium-transporters: Trpm7 As Novel Signature Of Tumour Development **Mag Res**, 2013

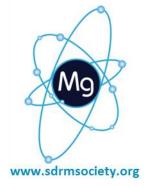

The Hallmarks of Cancer

Hanahan and Weinberg, Cell, 2000

Hanahan and Weinberg, Cell, 2011

Contents lists available at ScienceDirect

Cancer Treatment Reviews


COMPLICATIONS OF TREATMENT

Magnesium and tumors: Ally or foe?

Federica I. Wolf^{a,*}, Achille R.M. Cittadini a,c, Jeanette A.M. Maier b,d

*Università Cattolica del Sacro Cuore, Istituto di Patologia generale e Centro di Ricerche Oncologiche Giovanni XXIII, Facoltà di Medicina "A. Gemelli", Largo Francesco Vito 1, 00168 Roma, Italy

^bUniversità di Milano, Dipartimento di Scienze Precliniche UTA Vialba, Via G.B. Grassi 74, 20157 Milano, Italy

Carcinogenesis:

Oxidative stress

DNA damage repair

Tumour growth and spreading:

Proliferation, Metabolism

Angiogenesis

Invasion

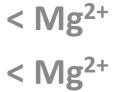
Metastasis

Inflammation

Tumour treatment:

Neprotoxic agents

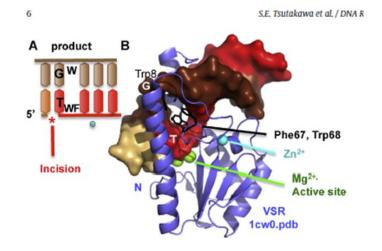
Therapeutical outocome?


Magnesium in Carcinogenesis

In Vitro mechanisms

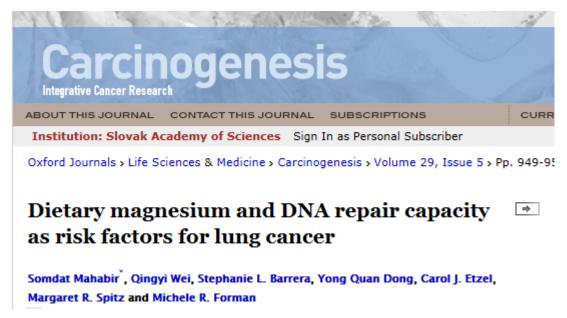
Oxidative stress 1

DNA damage repair |



G Model DNAREP-1929; No. of Pages 13	ARTICLE IN PRESS	
	DNA Repair xxx (2014) xxx-xxx	
	Contents lists available at ScienceDirect	DNA
	DNA Repair	Repair
ELSEVIER	journal homepage: www.elsevier.com/locate/dnarepair	

The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once


Susan E. Tsutakawa a,*, Julien Lafrance-Vanasse a, John A. Tainer a,b,*

^a Life Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA ^bThe Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA

Magnesium in Carcinogenesis in vivo data

1139 cases and 1210 matched healthy controls with data on both diet and DNA repair capacity (DRC), measured using the host cell reactivation assay to assess repair in lymphocyte cultures.

Low dietary Mg intake was associated with poorer DRC and increased risk of lung cancer. The effects were more pronounced among older subjects (>60 years), current or heavier smokers, drinkers, those with a family history of cancer.

Magnesium in carcinogenesis

Epidemiological data

OPEN @ ACCESS Freely available online

Blood Magnesium, and the Interaction with Calcium, on the Risk of High-Grade Prostate Cancer

Qi Dai¹**, Saundra S. Motley¹, Joseph A. Smith Jr.², Raoul Concepcion^{2,3}, Daniel Barocas², Susan Byerly¹, Jay H. Fowke¹*

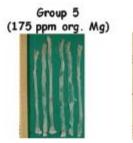
1 Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 2 Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 3 Urology Associates, Nashville, Tennessee, United States of America

magnesium intake and colorectal tumor risk: a case-control study and meta-analysis^{1,2,3,4}

Petra A Wark, Rosa Lau, Teresa Norat, and Ellen Kampman

Carcinogenesis: in vivo data

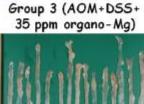
Carcinogenesis vol.34 no.2 pp.361–369, 2013 doi:10.1093/carcin/bgs348 Advance Access publication November 3, 2012


Organomagnesium suppresses inflammation-associated colon carcinogenesis in male Crj: CD-1 mice

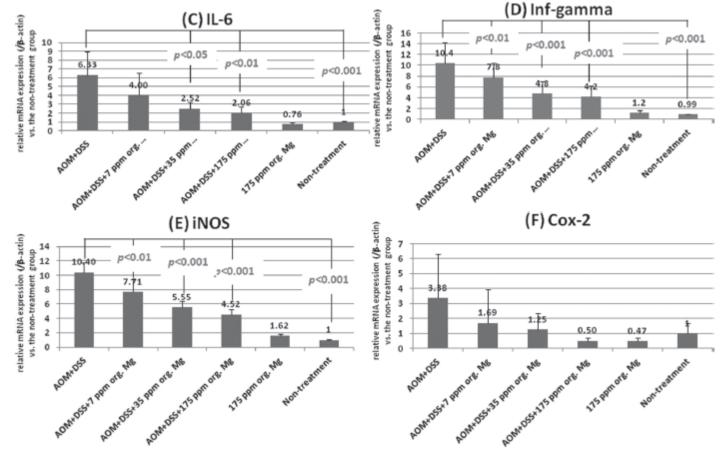
Toshiya Kuno¹, Yuichiro Hatano¹, Hiroyuki Tomita¹,

There has been a marked increase in the understanding of cell and molecular mechanisms underlying a variety of carcinogenic pro-

Azoxymetane Dextran Sulphate



Group 4 (AOM+DSS+


- Inflammation score
- Mitotic index (AI)
- Inflammatory cytokines:
- TNFα, IL-1β, IL-6, INF-γ,

MCM2-positive index

Anaphase Bridging Index (ABI)

iNOS, Cox-2

Conclusion

- Organo-Mg inhibits inflammation-related mouse colon carcinogenesis by modulating
 - the proliferative activities
 - chromosomal instability of CRC and
 - suppressing colonic inflammation
- Results may suggest potential use of
- organo-Mg for clinical chemoprevention trials of CRC in the inflamed colon.
 - Toshiya K, Carcinogenesis, 2013

Tumour growth and spreading:

Primary tumou growth

Inflammation

Metastatization

Magnesium and cell cycle regulation

Magnesium Depletion Causes Growth Inhibition, Reduced Expression of Cyclin D1, and Increased Expression of P27^{KIP1} in Normal But Not in Transformed Mammary Epithelial Cells

ALESSANDRO SGAMBATO,* FEDERICA I. WOLF, BEATRICE FARAGLIA,

Biochemistry

Magnesium Deficiency Suppresses Cell Cycle Progression Mediated by Increase in Transcriptional Activity of p21^{Cip1} and p27^{Kip1} in Renal Epithelial NRK-52E Cells

Akira Ikari, ^{1*} Hayato Sawada, ¹ Ayumi Sanada, ¹ Chie Tonegawa, ¹ Yasuhiro Yamazaki, ¹ and Junko Sugatani ^{1,2}

¹Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

²Global Center of Excellence for Innovation in Human Health Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruqa-ku, Shizuoka 422-8526, Japan

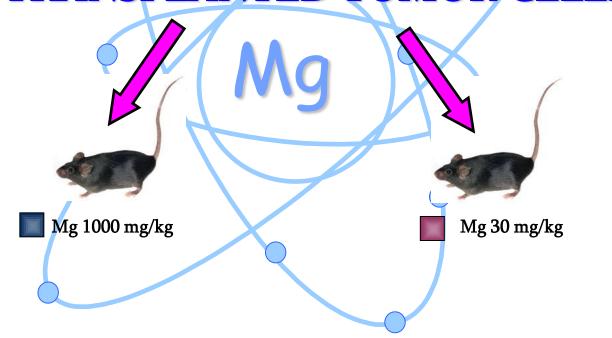
Magnesium and angiogenesis

In vitro data

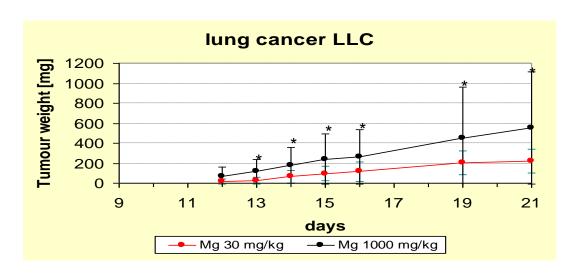
Circulation Research

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Influence of extracellular magnesium on capillary endothelial cell proliferation and migration.


S Banai, L Haggroth, S E Epstein and W Casscells

J. Maier, J. Maier, J. Maier



Magnesium and Tumour growth: in vivo data

TRANSPLANTED TUMOR CELLS

NATO collaborative linkage grant, 2004-2006


IN CONDITIONS OF MYPOMAGNESEMIA:

- TUMOR GROWTH (LUNG, COLON, MAMMARY) WAS SIGNIFICANTLY INHIBITED
- > TUMORS WERE LESS VASCULARIZED
- TUMOR OXIDATIVE DNA DAMAGE WAS HIGHER
- CLEAR-CUT SIGNS OF IMMUNO-INFLAMMATORY RESPONSE

Nasulewicz A, et al. Biochim Biophys Acta 2004. Maier JAM et al. Nutr & Cancer, 2007 Wolf FI et al., Nutr & Cancer, 2008

Inflammation and cancer

- EXSTRINSIC
 - INFECTIOUS,
 INFLAMMATORY CONDITIONS
- INTRINSIC
 - ONCOGENETIC EVENTS

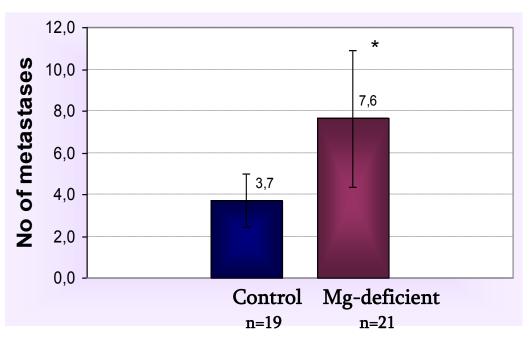
- Transcription factors (NF-kB; STAT3; HIFs)
 - Inflammatory cells (PMN, Eo, Macro)

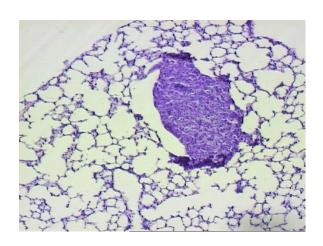
- CHEMOKINES, CYTOKINES PROSTAGLANDINS :
 - IL-1, TNF, VEGF, CXCL8, CCL2, COX2

CANCER-RELATED INFLAMMATION

CANCER-RELATED INFLAMMATION

Tumour microenvironment





Proliferation, survival, EMT;
angiogenesis and lymphangiogenesis;
migration, invasion, metastasis;
inhibition of adaptive immunity;
Response to hormones and chemotherapeutic agents

Mg deficiency enhanced metastatic potential of LLC cells in C57Bl/6 mice

Lung metastatic focus in Mg-deficient mice


* *p*<0.05

Magnesium Deficiency Inhibits Primary Tumor Growth But Favors Metastasis in mice.

Nasulewicz A., et al., BBA, 2004

Magnesium and Tumour treatment

Cisplatin

EGFR mAb: cetuximab

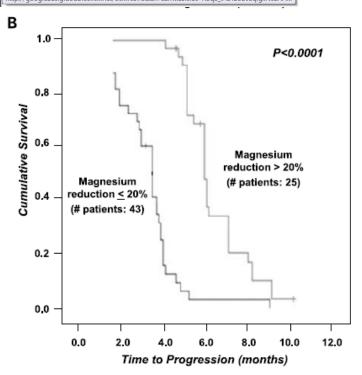
Hypomagnesemia

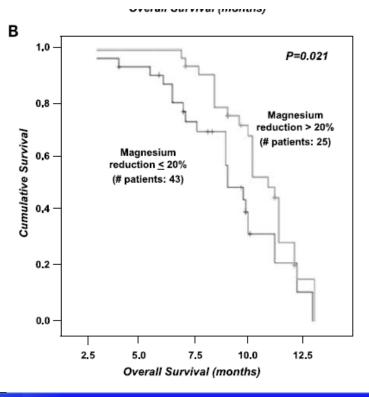
- Normomagnesaemia: 1.9-2.5 mg/dL (0.78-1.03 mmol/L);
- Hypomagnesaemia : < 1.8 mg/dL (0.74 mmol/L);
- NCI-CTCAE grading of symptomatic hypoMg:
- grade 1 [1.2 mg/dL (0.5 mmol/L)],
- grade 2 [1.2-0.9 mg/dL (0.5-0.4 mmol/L)],
- grade 3 [0.9-0.7 mg/dL (0.37-0.29 mmol/L)],
- grade 4 [<0.7 mg/dL (< 0.29 mmol/L)];

.....does it affect treatment outocome ??

Magnesium and Tumour treatment:

Clinical Cancer Research




Early Magnesium Reduction in Advanced Colorectal Cancer Patients Treated with Cetuximab Plus Irinotecan as Predictive Factor of Efficacy and Outcome

Bruno Vincenzi, Daniele Santini, Sara Galluzzo, et al.

Clin Cancer Res 2008:14:4219-4224 http://googleads.g.doubleclick.net/aclk?sa=L&ai=CzmtlE5xxU9-XBqS_IAL42oDICqiqxNcEAA...

Magnesium and Tumour treatment:

Incidence and risk of hypomagnesemia in advanced cancer patients treated with cetuximab: A meta-analysis.

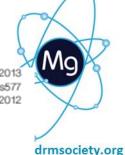
Chen P, Wang L, Li H, Liu B, Zou Z. Oncol Lett. 2013 Jun;5(6):1915-1920.

The study concluded that cetuximab is associated with a significant risk of hypomagnesemia in patients with advanced cancer receiving concurrent chemotherapy.

Clinical relevance and utility of cetuximab-related changes in magnesium and calcium serum levels.

Stintzing S, Fischhaber D, Mook C, Modest DP, Giessen C, Schulz C, Haas M, Boeck S, Michl M, Stemmler J, Laubender RP, Heinemann V.

Anticancer Drugs. 2013 Oct;24(9):969-74.


"As hypomagnesemia was more prominent in patients receiving platinum agents, magnesium measurements may be advised in these patients.

In mCRC patients treated with cetuximab, day-14 magnesium serum levels correlated with treatment efficacy."

Magnesium and Tumour treatment:

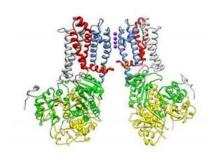
Annals of Oncology 24: 953–960, 2013 doi:10.1093/annonc/mds577 Published online 8 November 2012

Association of hypomagnesemia with inferior survival in a phase III, randomized study of cetuximab plus best supportive care versus best supportive care alone: NCIC CTG/AGITG CO.17

M. M. Vickers¹, C. S. Karapetis², D. Tu³, C. J. O'Callaghan³, T. J. Price⁴, N. C. Tebbutt⁵, G. Van Hazel⁶, J. D. Shapiro⁷, N. Pavlakis⁸, P. Gibbs⁹, J. Blondal¹⁰, U. Lee¹¹, J. M. Meharchand¹², R. L. Burkes¹³, S. H. Rubin¹⁴, J. Simes¹⁵, J. R. Zalcberg¹⁶, M. J. Moore¹⁷, L. Zhu³ & D. J. Jonker¹⁸

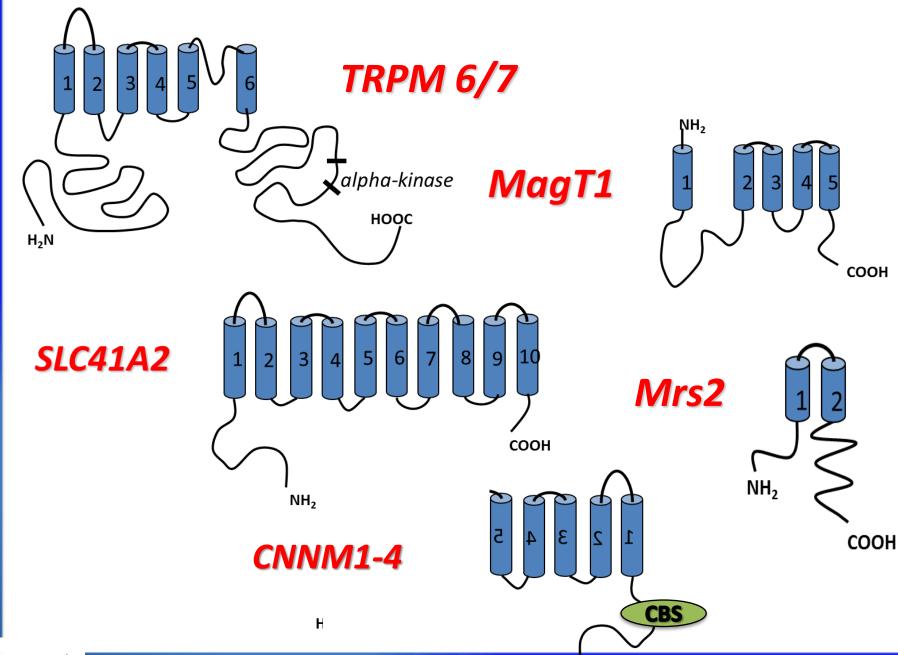
Conclusions: In contrast to prior reports, cetuximab-induced hypomagnesemia was associated with poor OS, even after adjustment for grade of rash.

Conclusions


- Magnesium affects all steps of carcinogenesis and tumour growth
 - Low magnesium enhances neoplastic transformation
- Low magnesium inhibits tumour growth but favors metastasis
- Hypomagnesemia is a consequence of nephrotoxic therapeutic drugs
 - Its role as predictor factor of therapeutic efficacy or as chemotherapy enhancer is debated

Magnesium and Tumour:

From bedside back to

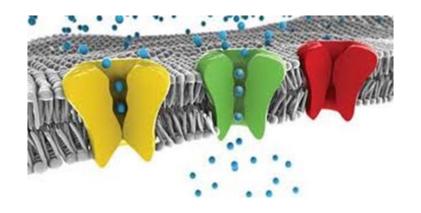

Bench

ION CHANNELS AND MAGNESIUM HOMEOSTASIS

Ion channels in tumours

Regulate:
Proliferation
Invasion
Chemoresistance

Nature Reviews | Drug Discovery


Hence.....

Inhibition of Ion channels can be exploited as

New Therapeutic strategy

TRPM7 in cancer

Functions:

Regulates cell proliferation

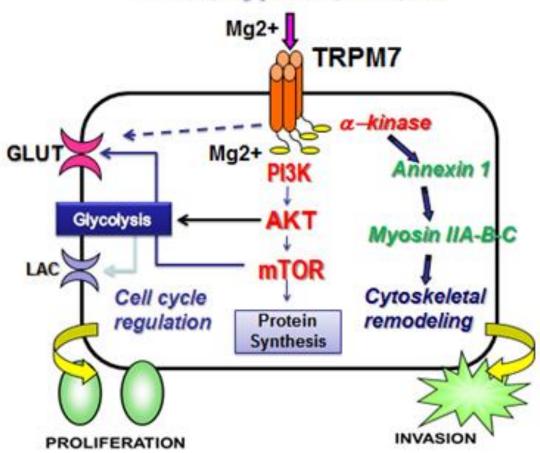
Metabolic reprogramming

Migration

TRPM7 and metabolic reprogramming

Cancer cells: Warburg Effect (Aerobic glycolysis)

Proliferating cells: Metabolic reprogramming


High glucose consumption,
Macromolecules biosynthsis,
DNA synthesis
Cytoskeletal remodelling

TRPM7 metabolism and proliferation

EGFR, hypoxia, ATP,....

Wolf & Trapani, Clin Sci, 2012

TRPM7 in proliferation and cancer

Am J Physiol Cell Physiol 297: C493–C502, 2009.First published June 10, 2009; doi:10.1152/ajpcell.00624.2008.

Evidence that TRPM7 is required for breast cancer cell proliferation

Arnaud Guilbert, ** Mathieu Gautier, ** Isabelle Dhennin-Duthille, ** Nathalie Haren, ** Henri Sevestre, ** and Halima Ouadid-Ahidouch **

¹Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and ²Service d'Anatomie Pathologique, Centre Hospitalier Universitaire Nord, Amiens, France

Table 1. Correlation between TRPM7 expression and tumor grade

Tumor Grade	TRPM7 Overexpression	n	χ^2
Grade I	45.4%	11	0.5051
Grade III	60%	10	

Correlation between melastatin transient receptor potential (TRPM)7 expression and tumor grade in 21 patients by χ^2 analysis is shown. A significant statistical correlation is identified when the returned P was <0.05.

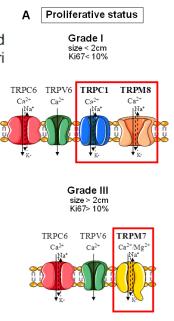
RESEARCH ARTICLE

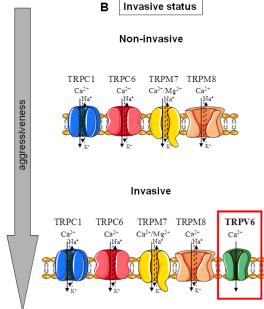
Disease Models & Mechanisms 4, 240-254 (2011) doi:10.1242/dmm.004564

Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg²⁺-sensitive Socs3a signaling in development and cancer

Nelson S. Yee^{1,2,*}, Weigiang Zhou^{1,2,‡,5} and I-Chau Liang^{1,2,5,1}

Original Paper


Cellular Physiology and Biochemistry

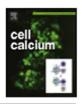

Cell Physiol Biochem 2011;28:813-822

Acc

High Expression of Transient Receptor Potential Channels in Human Breast Cancer Epithelial Cells and Tissues: Correlation with Pathological Parameters

Isabelle Dhennin-Duthille¹, Mathieu Gautier¹, Malika Faouzi¹, Arnaud Guilbert¹, Marie Brevet^{1,2}, David Vaudry³, Ahmed Ahidouch^{1,4}, Henri Sevestre^{1,2} and Halima Ouadid-Ahidouch¹

TRPM and migration


Cell Calcium 50 (2011) 559-568

Contents lists available at SciVerse ScienceDirect

Cell Calcium

EGF enhances the migration of cancer cells by up-regulation of TRPM7

Haixia Gao a,b, Xingjuan Chen a,b, Xiaona Du a,b, Bingcai Guan a,b, Yani Liu a,b, Hailin Zhang a,b,*

TRPM7 regulates polarized cell movements

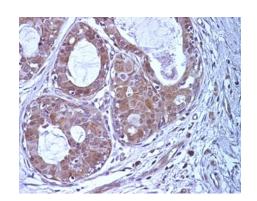
Li-Ting SU*1.2, Wei LIU†1, Hsiang-Chin CHEN*, Omayra GONZÁLEZ-PAGÁN*, Raymond HABAS†3 and Loren W. RUNNELS*3

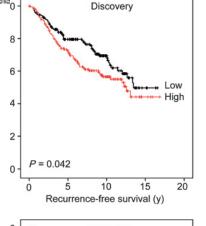
*Department of Pharmacology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, U.S.A., and †Department of Biology, College of Science and Technology, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, U.S.A.

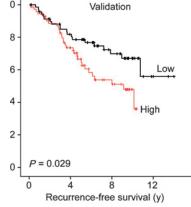
^a The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, PR China

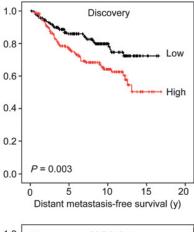
b The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China

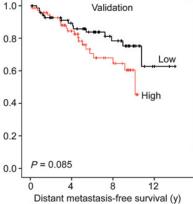
TRPM7 expression in breast cancer

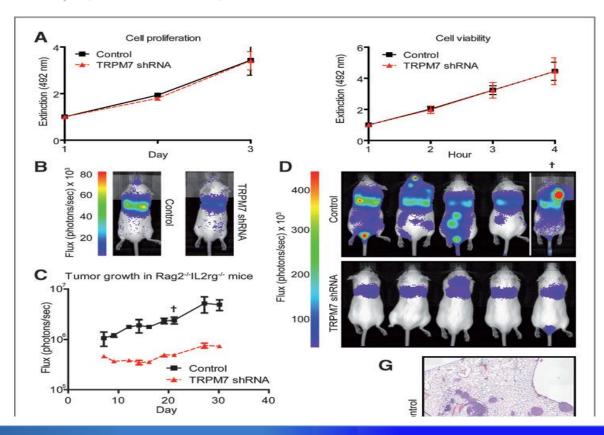

Cancer Research


Tumor and Stem Cell Biology


TRPM7 Is Required for Breast Tumor Cell Metastasis


Jeroen Middelbeek¹, Arthur J. Kuipers¹, Linda Henneman⁶, Daan Visser⁶, Ilse Eidhof¹, Remco van Horssen², Bé Wieringa², Sander V. Canisius⁷, Wilbert Zwart⁹, Lodewyk F. Wessels


Paul N. Span⁵, Frank N. van Leeuwen¹, and Kees Jalink⁶


TRPM7 expression in cancer

Tumor and Stem Cell Biology

Cancer Research

TRPM7 Is Required for Breast Tumor Cell Metastasis

Jeroen Middelbeek¹, Arthur J. Kuipers¹, Linda Henneman⁶, Daan Visser⁶, Ilse Eidhof¹, Remco van Horssen², Bé Wieringa², Sander V. Canisius⁷, Wilbert Zwart⁹, Lodewyk F. Wessels⁸, Fred C.G.J. Sweep³, Peter Bult⁴, Paul N. Span⁵, Frank N. van Leeuwen¹, and Kees Jalink⁶

Contents lists available at SciVerse ScienceDirect

Cancer Letters

TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway

- ^a Xiaojing Meng ^{a,1}, Chunqing Cai ^{a,1}, Jiguo Wu ^a, Shaoxi Cai ^b, Changsheng Ye ^c, Haiyang Chen ^a, Zhengduo Yang ^d, Hongqiang Zeng ^a, Qiang Shen ^{d,*}, Fei Zou ^{a,*}
 - Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
 - Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
 - ^c Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
 - Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

European Journal of Cancer (2013) 49, 3694-3707

Available at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.ejcancer.com

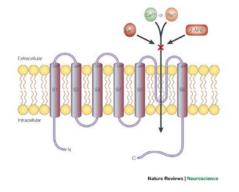
Transient receptor potential melastatin 7 is involved in oestrogen receptor-negative metastatic breast cancer cells migration through its kinase domain

A. Guilbert ^{a,d}, M. Gautier ^{a,d}, I. Dhennin-Duthille ^{a,d}, P. Rybarczyk ^a, J. Sahni ^b, H. Sevestre ^{a,c}, A.M. Scharenberg ^b, H. Ouadid-Ahidouch ^{a,*}

TRPM7 over-expression in ductal pancreatic carcinoma

International Journal of Cancer

Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal adenocarcinomas and regulates human pancreatic cancer cell migration

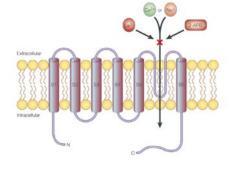

Pierre Rybarczyk¹, Mathieu Gautier¹, Frédéric Hague¹, Isabelle Dhennin-Duthille¹, Denis Chatelain², Julie Kerr-Conte³, François Pattou³, Jean-Marc Regimbeau⁴, Henri Sevestre^{1,2} and Halima Ouadid-Ahidouch¹

TRPM7 regulates cell migration by a Mg²⁺-dependent mechanism.

TRPM7 is a promising biomarker of PDAC progression and prognosis.

TRPM7 as a therapeutic target

Sirna o KO inhibits cell proliferation / migration


KO cells can survive only in 30 mM Mg²⁺

Chemical inhibition

Co-exammine, APB
Imipramine / Quinidine
Waixenicin (*Zierler*, *JBC*, 2011)
NS8593 -SCCa-Ki (*Chubanov*, *BJP*, 2012)

TRPM7 inhibition

Nature Reviews | Neuroscience

RESEARCH PAPER

Natural and synthetic modulators of SK (K_{ca}2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7

V Chubanov^{1*}, M Mederos y Schnitzler^{1*}, M Meißner¹, S Schäfer¹, K Abstiens¹, T Hofmann² and T Gudermann¹

¹Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Munich, Germany, and ²Institute of Pharmacology, University of Marburg, Marburg, Germany

Correspondence

V Chubanov, Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336 Munich, Germany. E-mail: vladimir.chubanov@ Irz.uni-muenchen.de

DOI:10.1111/j.1476-5381.2012.01855.x

www.brjpharmacol.org

*These authors contributed equally.

Keywords

transient receptor potential; TRPM7; SK channels; K_{Ca}2.1–2.3 channels; magnesium; cell motility

Received

24 May 2011 Revised 15 December 2011 Accepted 4 January 2012

The Role of Waixenicin A as Transient Receptor Potential Melastatin 7 Blocker.

Kim BJ, Nam JH, Kwon YK, So I, Kim SJ.

Basic Clin Pharmacol Toxicol. 2012 Aug 18. [Epub ahead of print]

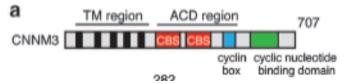
2007	Epidemiologic data: TRPM7 polimorphism and Ca ²⁺ /Mg ²⁺ in colon carcinogenesis; (Dai, 2007)
	TRPM7 and proliferation in human head and neck carcinoma cells (Jiang CR2007)
2010	TRPM7 suppression induced apoptosis in gastric cancer (Kim, CS2008)
	TRPM7 is required for breast cancer cell proliferation ; overexpressed in grade III breast cancer samples (Guilbert, AJPCP 2009)
	TRPM7 regulates the migration of human nasopharyngeal carcinoma cell (Chen Cell Ca 2010) Up-regulation of TRPM7 by EGF enhances the migration of cancer cells (Gao cell Ca 2011)
	TRPM7 in human breast ductal adenocarcinoma : prognostic factor (Dhennin-Duthille CPB 2011)
	TRPM7 has an important role in the growth and survival of gastric cancer cells (Kim CJPP 2012)
	TRPM7 regulates cell migration in human pancreatic ductal adenocarcinoma (Rybarczyk IJC 2012)
2012	TRPM7 is required for breast tumor cell metastasis . (Middelbeek CR 2012)
	TRPM7activated by Ca ²⁺ /Mg ²⁺ promotes proliferation of prostate cancer cells (Sun JBC 2013)
	TRPM7 mediates breast cancer cell migration and invasion (Meng CL 2013)
2013	TRPM7 is involved in EMT in breast cancer cells (Davies O 2013)
	TRPM7 is involved in ER-metastatic breast cancer cells migration (Guilbert EJC 2013)

Magnesium transporters in cancer: New raising star

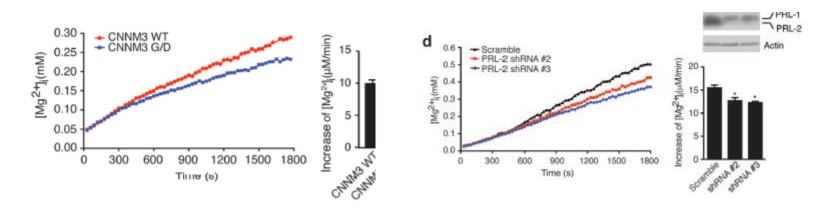
Oncogene (2014), 1–10
© 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14

www.nature.com/onc

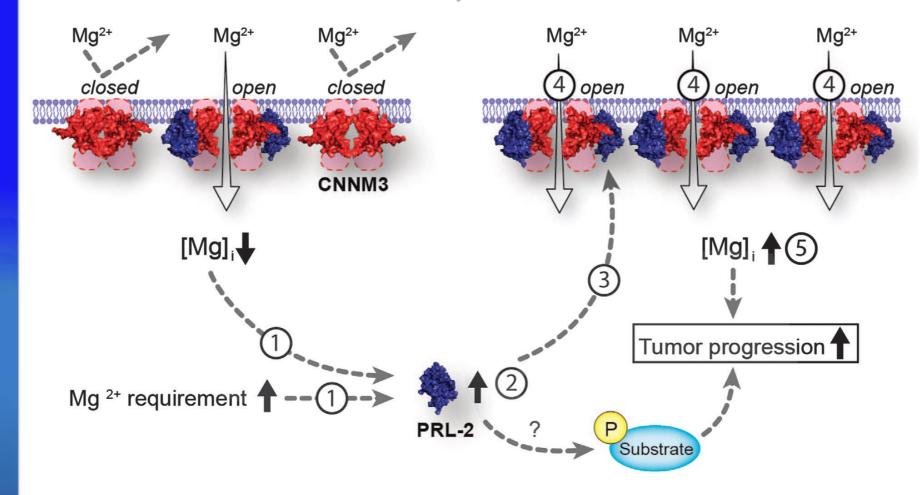
ORIGINAL ARTICLE

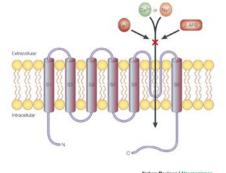

The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis

S Hardy¹, N Uetani¹, N Wong^{1,2}, E Kostantin^{1,2}, DP Labbé^{1,3}, LR Bégin⁴, A Mes-Masson⁵, D Miranda-Saavedra^{6,7} and ML Tremblay^{1,2,3}


- PRL-2 is key contributors to metastasis in several human cancers
- PRL-2 is overexpressed in breast cancer
- PRL-2 regulates intracellular magnesium levels by forming a functional heterodimer with the magnesium transporter CNNM3
- CNNM3 is not a phosphorylated substrate of PRL-2, the interaction occurs through a loop unique to the CBS pair domains

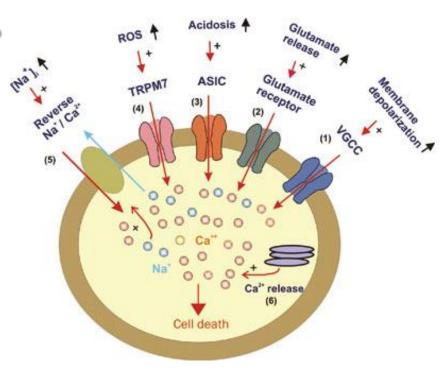
Magnesium transporters in cancer: New rising star


- PRL-2 knockdown results in a substantial decrease of cellular magnesium influx
- CNNM3 association is important for conferring transforming activities
- in human breast
- cancer tissues showing that CNNM3 levels correlate positively with both PRL-2 expression and the tumor proliferative index.


Magnesium in carcinogenesis

Biochemical, in vitro data

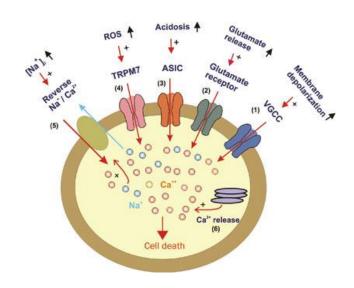
Conclusion


- ✓ Ion channels are able to affect tumour cell behaviours
 - √ TRPM7 is essential component of metabolism, proliferation and invasion
 - ✓ It is overexpressed in some tumours
 - √ It can be utilized as a prognostic factor
 - ✓ It can be exploited as therapeutic target

We propose....

To include the

«ion channel signature»


as a promising strategy for the treatment of cancer

How far, How close......

How close....

Other Magnesium transporters or Mg transport-Related protein are emerging

How far....

Further research from bench to bedside is required for identifying the most efficient strategy to target magnesium homeostasis as novel therapeutic strategies.

Istituto di Patologia generale Chairman Prof. Achille Cittadini

Valentina Trapani
Alessandro Sgambato
Alma Boninsegna
Daniela Arduini

INRA Clermont-Ferrand,
France
Andrè Mazur

Francesca Luongo

Università di Milano Jeanette Maier