

How much and where is it? Simple questions, challenging tasks: Mapping the intracellular content of Magnesium and other chemical elements

Smolenice, May 11-15, 2014

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Back to basics

"How much and where is it?"

Represents one of the archetypal questions essential in science

Smolenice, May 11-15, 2014

Elements of the Human body

Element	Symbol	Percentage in Body		
Oxygen	0	65.0		
Carbon	С	18.5		
Hydrogen	н	9.5		
Nitrogen	N	3.2		
Calcium	Ca	1.5		
Phosphorus	Р	1.0		
Potassium	к	0.4		
Sulfur	S	0.3		
Sodium	Na	0.2		
Chlorine	CI	0.2		
Magneslum	Mg	0.1		
Trace elements include boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).		less than 1.0		

Smolenice, May 11-15, 2014

Smolenice, May 11-15, 2014

Cell composition

Smolenice, May 11-15, 2014

- What is local?
- cells, tissues, organs
- What is systemic?
- body, blood circulation

is there a real distinction?

Smolenice, May 11-15, 2014

NMR IN BIOMEDICINE, VOL. 9, 24-32 (1996)

In Vivo Assessment of Free Magnesium Concentration in Human Brain by ³¹P MRS. A New Calibration Curve Based on a Mathematical Algorithm

S. Iotti,† C. Frassineti,‡ L. Alderighi,§ A. Sabatini,§ A. Vacca,§ and B. Barbiroli†*

[†] Cattedra di Biochimica Clinica, Dipartimento di Medicina Clinica e Biotecnologia applicata 'D. Campanacci', Università di Bologna, Via Massarenti, 9, 40138 Bologna; [‡] Dipartimento di Scienze Biomediche, Università di Modena; [§] Dipartimento di Chimica, Università di Firenze, Italy

Smolenice, May 11-15, 2014

Magnesium in Brain

Magnesium in Brain

Magnesium in Mitochondrial Cytopathies

lotti et al. J. Cerebr. Blood Flow Metab. 1999; 19:528-532

Smolenice, May 11-15, 2014

Magnetic Resonance Imaging 18 (2000) 607-614

In vivo ³¹P-MRS assessment of cytosolic [Mg²⁺] in the human skeletal muscle in different metabolic conditions

S. Iotti^a,*, C. Frassineti^b, L. Alderighi^c, A. Sabatini^c, A. Vacca^c, B. Barbiroli^a

Magnesium in Muscle

The complex relationship between magnesium and serum parathyroid hormone: a study in patients with chronic intestinal failure

Loris Pironi², Emil Malucelli¹, Mariacristina Guidetti², Elisabetta Lanzoni², Giovanna Farruggia³, Antonio Daniele Pinna⁴, Bruno Barbiroli¹, Stefano Iotti^{1,5}

<u>The opposite correlations with</u> <u>serum-PTH displayed by muscle</u> [Mg²⁺] and serum total Mg <u>suggests:</u>

that total circulating Mg and the intracellular free fraction of Mg are separate pools undergoing to different regulatory mechanisms

Figure 2. Magnesium correlations with serum PTH in 15 patients. (A) muscle free [Mg²⁺] assessed by ³¹P MRS; (B) serum total Mg assessed by colorimetric assays.

.....moving down

Smolenice, May 11-15, 2014

....and down again

Fluorescently Labelled Subcellular Organelles and Proteins

Smolenice, May 11-15, 2014

....and down again

Smolenice, May 11-15, 2014

"A new world is coming. A scientific revolution is under way. A giant revolution on the smallest of scales"

To see this major revolution, you need to **go** deep **down** into the world of the infinitely small <u>BUT</u>

Going deep down to micro (nano) scale world

strange things happen

Smolenice, May 11-15, 2014

Position and velocity from macroworld to nanoworld

Smolenice, May 11-15, 2014

Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle

you are here

if you're neither here nor there, you aren't really anywhere

Macro and Micro

Moving from macro to micro

- Different perpectives
- Different informations

Smolenice, May 11-15, 2014

Disordered hyperuniformity

PHYSICAL REVIEW E 89, 022721 (2014)

Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem

These new state of matter have a «hidden order» that allows to behave like crystal at bigger scale and liquid at smaller scale

Spatial distribution of the five different cell types of cone photoreceptors of chicken retina

They are organized into states of disordered hyperuniformity:

a new state of matter that exhibits order over large distances and disorder over small distances

At bigger scale it's like a crystal, but at smaller scale it's liquid-like in that it exhibits similar physical properties in all directions

Smolenice, May 11-15, 2014

- Serum Mg concentration is considered a poor indicator of the body Mg pool representing only 0.3%
- Poor correlation between serum Mg and the tissue content of Mg
- Intracellular Mg depletion can be present despite a normal serum Mg concentration

Smolenice, May 11-15, 2014

Content and Position

How much and where is it?

Is it possible to measure elemental concentration and spatial distribution at once?

Conceptual limitations?

Technical limitations?

Smolenice, May 11-15, 2014

<u>Mg²⁺ fluctuations observed with commercial probes</u> <u>cannot provide enough informations for a full</u> <u>understanding of cellular Mg²⁺ Homeostasis</u>

Limitations:

<u>Detection of free Mg²⁺ fluctuations</u>
<u>Cross-reactivity with Ca²⁺</u>

Smolenice, May 11-15, 2014

Main Fluorescent Mg²⁺ Indicators: total or free this is the question!

			Abso maxia (nm)	rption mum	Emissi maxin (nm)	ion 1um	Kd	Kd
Indicator	Binding site	Fluorophore	Free	Bound	Free	Bound	$\underline{(Mg^{2+})}$	$\underline{(Ca^{2+})}$
Mag-fura-2	APTRA	Furan	369	330	511	491	1.9 mM	25 µM
Mag-indo-1	APTRA	Indole	349	330	480	417	2.7 mM	35 µM
Mag-fluo-4	APTRA	Fluorescein	490	493	None	517	4.7 mM	22 µM
KMG-104	β-Diketone	Fluorescein	502	504	523	523	21	75 mM
DCHQ1	Diaza-18-crown-16	Hydroxyquinoline	363	363	505	505	<u>44 µM</u>	<u>ND</u>
AMgl	APTRA	Naphthalene	365	365	498	498	1.4 10.91	> µ111
CMg1	β-Keto acid	Benzo[h]chromene	413	443	556	559	1.3 mM	3.6 mM
Ray and Bharadwaj	NO2 donor set	Coumarin	488	555	None	602	<1 µM ^c	16.7 μM ^c
Hama et al.	Benzo-15-crown-5	Naphthaleneacetamide	258	250	338	338	2.9 µM ^c	1.3 µM ^c
Song et al.	Phenanthroimidazole	Calix[4]arene	332	347	409	493	33.6 µM ^c	ND
Ishida et al.	Phenanthroline	Porphyrin	496	575	583	631	26.8 mM ^c	ND^{d}

V. Trapani et al., Analyst, 2010, 135, 1855-1866. Review.

Smolenice, May 11-15, 2014

Welcome to the wonderful world of Organic Chemistry!

IVERS,

D

F

JIVER

Smolenice, May 11-15, 2014

Analyst

PAPER

View Article Online View Journal

Cite this: DOI: 10.1039/c3an01737k

A novel fluorescent chemosensor allows the assessment of intracellular total magnesium in small samples[†]

Azzurra Sargenti,^{*a} Giovanna Farruggia,^{ab} Emil Malucelli,^a Concettina Cappadone,^a Lucia Merolle,^a Chiara Marraccini,^c Giulia Andreani,^d Luca Prodi,^e Nelsi Zaccheroni,^e Massimo Sgarzi,^e Claudio Trombini,^e Marco Lombardo^e and Stefano Iotti^{ab}

Smolenice, May 11-15, 2014

DCHQ5

Correlation between the total intracellular Mg assessed by AAS and DCHQ1 or DCHQ5

Smolenice, May 11-15, 2014

ASC: Adipose-derived Stem Cell Hyaluronic + Butyric + Retinoic

5

Ź

days

VEGF, HGF, KDR: gene markers of vasculogenic differentiation

Ion Beam Analysis Techniques

- Ion Beam Analysis techniques
- have the capability of <u>mapping elements in unstained cells</u> to the microgram per gram (dry weight) sensitivity at higher spatial resolution (nanoscale) than electron microprobe (microscale)
- Different complementary ion beam techniques STIM, PIXE, RBS, NanoSIMS can be applied.
- Scanning Transmission Ion Microscopy
- Particle Induced X-ray Emission
- Rutherford Backscattering Spectrometry
- High-resolution Secondary Ion Mass Spectrometry

These are <u>destructive techniques</u> and <u>cannot yet be applied to living cells</u>

Smolenice, May 11-15, 2014

Quantification or spatial distribution? we have the power to choose!

Anal Bioanal Chem (2012) 402:3263–3273 DOI 10.1007/s00216-011-5484-3

REVIEW

Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants

Katie L. Moore • Enzo Lombi • Fang-Jie Zhao • Chris R. M. Grovenor

Correlative electron probe microanalysis (A) and NanoSIMS analysis (B) of the same sample of the nickel hyperaccumulator <u>Alyssum lesbiacum</u>

EPMA allowed quantitative analysis, whereas the NanoSIMS provided higher-resolution images

Smolenice, May 11-15, 2014

REVIEW

Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy

Multi-element imaging of a single PC12 cell exposed to MnCl2

C, N and O maps were imaged using RBS analysis, elements of higher Z were imaged using PIXE analysis

Smolenice, May 11-15, 2014

Quantitation and spatial distribution

Table 1. Typical characteristics of electron, proton and synchrotron X-ray microprobes for trace element imaging, speciation and quantification in single cells (*for ultrathin samples; **for the latest generation of instruments).

X-ray micro-analytical techniques	detection limit	spatial resolution	selectivity	quantification
electron microprobe				
EDS (X-ray energy dispersive spectrometry)	$100{-}1000 \ \mu g \ g^{-1}$	$0.03^{*} - 0.5 \ \mu m$	multi-elemental	semi-quantitative
EELS (electron energy loss spectroscopy)	$1000 \ \mathrm{\mu g \ g}^{-1}$	$\mathrm{atomic}^{**},0.001\mu\mathrm{m}$	chemical species	
proton microprobe				
PIXE	$110\mu\mathrm{gg}^{-1}$	$0.2^{**}-2 \ \mu m$	multi-elemental	fully quantitative (combined to BS)
synchrotron microprobe				· · · · · · · · · · · · · · · · · · ·
XRF	$0.1 \mu g g^{-1}$	$0.1^{**}-2 \mu m$	multi-elemental	semi-quantitative
XAS	$100 \ \mu g \ g^{-1}$	1 μm	chemical species	-
		2		

Smolenice, May 11-15, 2014

Advanced Photon Source

A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national synchrotron x-ray research facility

Elettra and FERMI lightsources

Smolenice, May 11-15, 2014

Quantitative Chemical Imaging of the Intracellular Spatial Distribution of Fundamental Elements and Light Metals in Single Cells

Emil Malucelli,[†] Stefano Iotti,^{*,†,} Alessandra Gianoncelli,[§] Michela Fratini,[∥] Lucia Merolle,[†] Andrea Notargiacomo,[⊥] Chiara Marraccini,[#] Azzurra Sargenti,[†] Concettina Cappadone,[†] Giovanna Farruggia,^{†,} Inna Bukreeva,[⊥] Marco Lombardo,[‡] Claudio Trombini,[‡] Jeanette A. Maier,[∇] and Stefano Lagomarsino^{O,}

Fluorescence Spectra

Does the size matters?

$dR_{i} = w_{i}S\rho dz \times \frac{\Omega}{4\pi} \varepsilon(E_{i})\omega_{i}P_{i}\tau_{i}(E_{0})I_{0}(E_{0}) \times e^{-[\mu_{m}(E_{0})cosec(\alpha) + \mu_{m}(E_{i})cosec(\beta)]\rho z}$

This equation gives the mass fraction not the concentration

Smolenice, May 11-15, 2014

ELEMENTAL MAP

Quantitative maps: structure and composition

Atomic Force Microscopy

U2OS – Osteosarcoma cells

Cell fixation methods

cryofixed cells show a peri-nuclear ring of low density corresponding to endoplasmic reticulum not evident in chemically fixed cells

LoVo-R

LoVo-S

Effect of doxorubicine resistance on elemental distribution

LoVo cells: human colon carcinoma

Single cell analysis: is it a true improvement?

"Isolated material particles are abstractions, their properties being definable and observable only through their interactions with other systems" Bohr 1934 "Atomic Theory and the description of Nature"

"....on the basis of strictly empirical investigations, that the sheer reversal of our prior analytic dissection of the universe by putting the pieces together again, whether in reality or just in our minds, can yield no complete explanation of the behavior of even the most elementary living system" Paul Weiss 1973 "The Science of Life"

"When scientists reduce a whole complex system such as cells, genes or even elementary particles to the fondamental elements trying to explain their functions merely in term of the elemental components, they lose the possibility to understand the self-organizing activity of the whole system, hence the peculiar property of the complex systems such as the biological ones"

Filippo Conti in " Moving from the reductionistic to olistic approach in the study of biological systems"

Science and Beauty

The French physicist, mathematician, historian and philosopher of science **Pierre Duhem : Beauty Is a Fundamental Value of Science**

Visualization of a Lost Painting by Vincent van Gogh Using Synchrotron Radiation Based X-ray Fluorescence Elemental Mapping

Joris Dik,*^{,†} Koen Janssens,[‡] Geert Van Der Snickt,[‡] Luuk van der Loeff,[§] Karen Rickers,^{II} and Marine Cotte^{1,®}

<u>51</u>

Vincent van Gogh Patch of Grass Paris, 1887

Kröller-Müller Museum Otterlo, the Netherlands

Patch of grass

X-ray radiography

Portrait of a woman (1884/85)?

Conventional X-ray radiography has the following limitations:

- it is sensitive only to the heavy metals
- It sees all the painting layers

SR-XRF, to map the distribution of the different elements

WHEN SCIENCE MEETS ART

Smolenice, May 11-15, 2014

- Concettina Cappadone
- Emil Malucelli
- Giovanna Farruggia
- Azzurra Sargenti
- Lucia Merolle
- Stefano lotti

